Abstract

Stochastic evolutionary game dynamics for finite populations has recently been widely explored in the study of evolutionary game theory. It is known from the work of Traulsen et al. [2005. Phys. Rev. Lett. 95, 238701] that the stochastic evolutionary dynamics approaches the deterministic replicator dynamics in the limit of large population size. However, sometimes the limiting behavior predicted by the stochastic evolutionary dynamics is not quite in agreement with the steady-state behavior of the replicator dynamics. This paradox inspired us to give reasonable explanations of the traditional concept of evolutionarily stable strategy (ESS) in the context of finite populations. A quasi-stationary analysis of the stochastic evolutionary game dynamics is put forward in this study and we present a new concept of quasi-stationary strategy (QSS) for large but finite populations. It is shown that the consistency between the QSS and the ESS implies that the long-term behavior of the replicator dynamics can be predicted by the quasi-stationary behavior of the stochastic dynamics. We relate the paradox to the time scales and find that the contradiction occurs only when the fixation time scale is much longer than the quasi-stationary time scale. Our work may shed light on understanding the relationship between the deterministic and stochastic methods of modeling evolutionary game dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call