Abstract
Although the long-term behavior of stochastic evolutionary game dynamics in finite populations has been fully investigated, its evolutionary characteristics in a limited period of time is still unclear. In order to answer this question, we introduce the formulation of the path integral approach for evolutionary game theory. In this framework, the transition probability is the sum of all the evolutionary paths. The path integral formula of the transition probability is expected to be a new mathematical tool to explore the stochastic game evolutionary dynamics. As an example, we derive the transition probability for stochastic evolutionary game dynamics by the path integral in a limited period of time with the updating rule of the Wright-Fisher process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.