Abstract

BackgroundMulticellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head. Phylogenetic inference subdivides Dictyostelia into four major groups, with the model organism D. discoideum residing in group 4. In D. discoideum differentiation of its five cell types is dominated by lateral inhibition-type mechanisms that trigger scattered cell differentiation, with tissue patterns being formed by cell sorting.ResultsTo reconstruct the evolution of pattern formation in Dictyostelia, we used cell-type specific antibodies and promoter-reporter fusion constructs to investigate pattern formation in 98 species that represent all groupings. Our results indicate that in all early diverging Dictyostelia and most members of groups 1–3, cells differentiate into maximally two cell types, prestalk and prespore cells, with pattern formation being dominated by position-dependent transdifferentiation of prespore cells into prestalk cells. In clade 2A, prestalk and stalk cell differentiation are lost and the prespore cells construct an acellular stalk. Group 4 species set aside correct proportions of prestalk and prespore cells early in development, and differentiate into up to three more supporting cell types.ConclusionsOur experiments show that positional transdifferentiation is the ancestral mode of pattern formation in Dictyostelia. The early specification of a prestalk population equal to the number of stalk cells is a derived trait that emerged in group 4 and a few late diverging species in the other groups. Group 4 spore masses are larger than those of other groups and the differentiation of supporting cell types by lateral inhibition may have facilitated this increase in size. The signal DIF-1, which is secreted by prespore cells, triggers differentiation of supporting cell types. The synthesis and degradation of DIF-1 were shown to be restricted to group 4. This suggests that the emergence of DIF-1 signalling caused increased cell-type specialization in this group.Electronic supplementary materialThe online version of this article (doi:10.1186/2041-9139-5-34) contains supplementary material, which is available to authorized users.

Highlights

  • Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism

  • Our results indicate that positiondependent transdifferentiation of prespore cells into stalk cells is the ancestral mechanism for cell-type specialization in Dictyostelia, with position-independent proportioning of prestalk and prespore cells and additional cell-type diversification occuring mainly in group 4

  • Phylogeny-wide analysis of pattern formation Cell differentiation patterns can be visualized by a range of techniques, such as in situ hybridization, analysis of cells transformed with fusion constructs of cell-type specific promoters and reporter genes, or with antibodies

Read more

Summary

Introduction

Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head. Multicellularity allows division of labour between cells and the construction of multi-layered tissues in which specialized cells perform different functions Organs and their constituent tissues develop from undifferentiated cells in the early embryo in response to a succession of chemical stimuli. Polyketide based signals such as DIF-1 (Differentiation inducing factor 1), which are produced by prespore cells [9] cause the differentiation of these support cells [10]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.