Abstract

Inter-individual variation in juvenile body size can have important consequences for individual fitness, population dynamics, and adaptive evolution. In wild vertebrate populations, larger juvenile size is usually expected to be selected for. However, understanding how such selection may translate into adaptive evolution requires an understanding of the genetic underpinnings of early development and the factors modulating selection. In this study, we characterised the genetic basis of and selection pressures acting upon juvenile body size in a large insular population of feral horses on Sable Island, Canada, to gain insights into the evolution of juvenile body size in wild vertebrate populations. We used pedigree-based quantitative genetic ‘animal models’ to quantify the sources of phenotypic variation in withers-knee length, and assessed the influence of maternal age, sex, and temporal (birth year) and spatial environmental heterogeneity in modulating overwinter survival selection. We found that withers-knee length is moderately heritable and that there was a significant positive genetic correlation between males and females. There was no indication of directional selection in a pooled-sex analysis, but we did find evidence for significant sexually antagonistic selection, with a tendency for smaller body size to be favoured in males and larger body size to be favoured in females. These results suggest that juvenile body size has the potential to evolve in this population, and that selection on juvenile size may play an important role in modulating sex-specific contributions to population dynamics. However, our results also suggest that there is unlikely to be evolutionary change in the mean body size of Sable Island foals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.