Abstract
Whole-genome duplications (WGDs) have been at the heart of the diversification of β-adrenergic receptors (β-ARs) in vertebrates. Non-teleost jawed vertebrates typically possess three β-AR genes: adrb1 (β1-AR), adrb2 (β2-AR), and adrb3 (β3-AR), originating from the ancient 2R (two rounds) WGDs. Teleost fishes, owing to the teleost-specific WGD, have five ancestral adrb paralogs (adrb1, adrb2a, adrb2b, adrb3a and adrb3b). Salmonids are particularly intriguing from an evolutionary perspective as they experienced an additional WGD after separating from other teleosts. Moreover, adrenergic regulation in salmonids, especially rainbow trout, has been intensively studied for decades. However, the repertoire of adrb genes in salmonids has not been yet characterized. An exhaustive genome survey of diverse salmonids, spanning five genera, complemented by phylogenetic sequence analysis, revealed each species has seven adrb paralogs: two adrb2a, two adrb2b, two adrb3a and one adrb3b. Surprisingly, salmonids emerge as the first known jawed vertebrate lineage to lack adrb1. adrb1 is nevertheless highly expressed in the hearts of non-salmonid teleosts, indicating that the wealth of data on adrenergic regulation in salmonids should be generalised to other teleost fishes with caution. It is hypothesised that the loss of adrb1 could have been viable because of the evolutionary radiation of adrb2 and adrb3 genes attributable to the salmonid WGD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have