Abstract
Texture classification aims at categorising instances that have a similar repetitive pattern. In computer vision, texture classification represents a fundamental element in a wide variety of applications, which can be performed by detecting texture primitives of the different classes. Using image descriptors to detect prominent features has been widely adopted in computer vision. Building an effective descriptor becomes more challenging when there are only a few labelled instances. This paper proposes a new Genetic Programming (GP) representation for evolving an image descriptor that operates directly on the raw pixel values and uses only two instances per class. The new method synthesises a set of mathematical formulas that are used to generate the feature vector, and the classification is then performed using a simple instance-based classifier. Determining the length of the feature vector is automatically handled by the new method. Two GP and nine well-known non-GP methods are compared on two texture image data sets for texture classification in order to test the effectiveness of the proposed method. The proposed method is also compared to three hand-crafted descriptors namely domain-independent features, local binary patterns, and Haralick texture features. The results show that the proposed method has superior performance over the competitive methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have