Abstract

In this paper, a formal engineering design synthesis methodology based on evolutionary computation is presented, with special emphasis on the design and optimization of distributed independent systems. A case study concerned with design of a sensory system for traffic monitoring purposes is presented, along with simulations of traffic scenarios at several levels of abstraction. It is shown how the methodology introduced is able to deal with the engineering design challenges present in the case study, and effectively synthesize novel design solutions of good quality. Moreover, when the fitness function is formulated as an aggregation of design preferences with different weights and trade-off strategies, the complete Pareto optimal frontier can be determined by the evolutionary synthesis methodology. The results of this study suggest that the approach can be useful for designers to solve challenging engineering design synthesis problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.