Abstract

Limb proportions have evolved among animals to meet functional demands among diverse environments. Studies from terrestrial, vertebrate locomotion have demonstrated that variation in limb proportions have adaptively evolved so animals can perform in a given environment. Most of the research on limb proportion evolution is among vertebrates and terrestrial locomotion, with little information on limb segment evolution in invertebrates or for other functional roles. For example, among invertebrates, multisegmented raptorial forelimbs have evolved multiple times independently to capture prey, but there is little information on the adaptive evolution and diversity of these limbs. Furthermore, as feeding performance is influenced by the sensory system, few studies have examined the coevolution of sensory-motor systems. Using mantises (Mantodea) I examined forelimb diversification among 97 species with a combination of methods, including ternary plots for morphospace visualization, phylogenetically informed allometric relationships, and comparison of evolutionary rates of diversification. Furthermore, using head width as a proxy for depth perception, I examined the correlated evolution of foreleg diversity with depth perception. The results show that among the three segments of the foreleg, the tibia is the smallest, most diverse, and has the highest rate of evolution after body size corrections. Furthermore, while all foreleg segments were related to head width, head width explained the most variation in tibial length compared with other foreleg segments. The results suggest a potential adaptive functional role of tibia length related to the displacement or force produced in this mechanical lever. Furthermore, results from this study support distinct ecomorphs of mantises, as several independent evolutions to grass mimicry evolve similar morphologies. RESEARCH HIGHLIGHT: This study demonstrates interspecific variation among segments of an invertebrate raptorial foreleg. Among Mantodea species the tibia is the most diverse and is related to a proxy for depth perception, while the other segments had strong relationships with body size. This suggests an adaptive, functional role of the tibia during prey capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call