Abstract
Myopia development is characterised by an increased axial eye length. Therefore, identifying factors that influence eye size may provide new insights into the aetiology of myopia. In humans, axial length is positively correlated to height and weight, and in mice, eye weight is positively correlated with body weight. The purpose of this study was to examine the relationship between eye size and body size in chickens from a genetic cross in which alleles with major effects on eye and body size were segregating. Chickens from a cross between a layer line (small body size and eye size) and a broiler line (large body and eye size) were interbred for 10 generations so that alleles for eye and body size would have the chance to segregate independently. At 3 weeks of age, 510 chicks were assessed using in vivo high resolution A-scan ultrasonography and keratometry. Equatorial eye diameter and eye weight were measured after enucleation. The variations in eye size parameters that could be explained by body weight (BW), body length (BL), head width (HW) and sex were examined using multiple linear regression. It was found that BW, BL and HW and sex together predicted 51–56% of the variation in eye weight, axial length, corneal radius, and equatorial eye diameter. By contrast, the same variables predicted only 22% of the variation in lens thickness. After adjusting for sex, the three body size parameters predicted 45–49% of the variation in eye weight, axial length, corneal radius, and eye diameter, but only 0.4% of the variation in lens thickness. In conclusion, about half of the variation in eye size in the chickens of this broiler-layer advanced intercross line is likely to be determined by pleiotropic genes that also influence body size. Thus, mapping the quantitative trait loci (QTL) that determine body size may be useful in understanding the genetic determination of eye size (a logical inference of this result is that the 20 or more genetic variants that have recently been shown to influence human height may also be found to influence axial eye length). Furthermore, adjusting for body size will be essential in mapping pure eye size QTL in this chicken population, and may also have value in mapping eye size QTL in humans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.