Abstract
Plant specialized metabolism emerged from the land colonization by ancient plants, becoming diversified along with plant evolution. To date, more than 1 million metabolites have been predicted to exist in the plant kingdom, and their metabolic processes have been revealed on the molecular level. Previous studies have reported that rates of evolution are greater for genes involved in plant specialized metabolism than in primary metabolism. This perspective introduces topics on the enigmatic molecular evolution of some plant specialized metabolic processes. Two transferase families, BAHD acyltransferases and aromatic prenyltransferases, which are involved in the biosynthesis of paclitaxel and meroterpenes, respectively, have shown apparent expansion. The latter family has been shown to beinvolved in the biosynthesis of a variety of aromatic substances, including prenylated coumarins in citrus plants and shikonin in Lithospermum erythrorhizon. These genes have evolved in the development of each special subfamily within the plant lineage. The broadness of substrate specificity and the exon-intron structure of their genes may provide hints to explain the evolutionary process underlying chemodiversity in plants.
Highlights
Since land plant colonization 500 million years ago, plant specialized metabolic processes have expanded considerably, resulting in the development of diverse traits within the plant kingdom (Weng et al, 2012)
This perspective focuses on two enzyme families as examples of molecular evolutionary events: the aromatic substrate prenyltransferase family, which plays a key role in the diversification of phenolics, and the BAHD (BEAT-AHCT-HCBT-DAT; initials of representative members) acyltransferase family, which is responsible for the derivatization of a core metabolite
An outline of the evolutionary development of plant aromatic prenyltransferases in Citrus species was revealed by a phylogenetic analysis of previously characterized prenyltransferases and prenyltransferases of the model species P. patens, S. moellendorffii, Arabidopsis thaliana, Glycine max, and Lithospermum erythrorhizon, in addition to Citrus sinensis (Figure 1A)
Summary
Since land plant colonization 500 million years ago, plant specialized metabolic processes have expanded considerably, resulting in the development of diverse traits within the plant kingdom (Weng et al, 2012). To avoid confusion in distinguishing between primary and specialized (secondary) metabolism, this article uses the term “common metabolism” rather than “primary metabolism” to indicate biosynthetic pathways conserved in a broad variety of organisms This perspective focuses on two enzyme families as examples of molecular evolutionary events: the aromatic substrate prenyltransferase family, which plays a key role in the diversification of phenolics, and the BAHD (BEAT-AHCT-HCBT-DAT; initials of representative members) acyltransferase family, which is responsible for the derivatization of a core metabolite. An outline of the evolutionary development of plant aromatic prenyltransferases in Citrus species was revealed by a phylogenetic analysis of previously characterized prenyltransferases and prenyltransferases of the model species P. patens, S. moellendorffii, Arabidopsis thaliana, Glycine max, and Lithospermum erythrorhizon (see below), in addition to Citrus sinensis (Figure 1A)
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have