Abstract

AbstractDrones, specifically quadcopters, have increased in importance during the last years due to their wide range of applications, from civil applications to military employment. One of the most important issues in quadcopters is the efficient control system. While many researchers have dealt with building control systems for symmetric quadcopters, this work presents an efficient control system for asymmetric quadcopters using evolutionary computations. The problem is well-defined throughout the paper, and the methodology is explained in detail in the respective sections. A genetic algorithm is used to tune the weighting matrix of the control system after formulating the control system as an optimization problem. The genetic algorithm was fast and active to increase the performance of the proposed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call