Abstract

In this paper an approach based on an evolutionary algorithm to design synchronous sequential logic circuits with minimum number of logic gates is suggested. The proposed method consists of four main stages. The first stage is concerned with the use of genetic algorithms (GA) for the state assignment problem to compute optimal binary codes for each symbolic state and construct the state transition table of finite state machine (FSM). The second stage defines the subcircuits required to achieve the desired functionality. The third stage evaluates the subcircuits using extrinsic Evolvable Hardware (EHW). During the fourth stage, the final circuit is assembled. The obtained results compare favourably against those produced by manual methods and other methods based on heuristic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.