Abstract
We have used an experimentally based strategy to address molecular mechanisms underlying adaptation in Fundulus heteroclitus. In an attempt to falsify the hypothesis that selection is a major driving force in the maintenance of genetic diversity, we employed a multidisciplinary approach including allelic isozyme and mtDNA phylogeography, kinetic analyses of allelic isozymes, analysis of variation in coding and regulatory DNA sequences, metabolic biochemistry, organismal physiology, and selection experiments. Observed differences in gene structure and expression led us to make testable predictions about differences in metabolic flux, whole organism performance, and differential survival between allotypes. We have shown that variation in the lactate dehydrogenase-B (Ldh-B) protein results in differences in physiological function and is correlated with differences in survival at high temperatures. Recent work has investigated the role of variation in Ldh-B expression. There are differences in the levels of Ldh-B protein, mRNA, and transcription rate. We have addressed the mechanisms responsible for differences in transcription rate by a combination of sequence comparison, DNase I footprinting, and functional analyses both in vitro and in vivo. We have shown that variation in the regulatory sequence of Ldh-B is responsible for the differences in transcription rate between populations and that the patterns of variation are inconsistent with a neutral model of molecular evolution. This functional differentiation, coupled with departures from neutral expectations, suggests that natural selection has acted on the regulation of Ldh-B. This article illustrates the value of a multidisciplinary approach in addressing problems in gene structure, expression, and evolutionary adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.