Abstract
In this paper, evolution of time delay (TD) signature of chaos generated in a mutual delay-coupled semiconductor lasers (MDC-SLs) system is investigated experimentally and theoretically. Two statistical methods, including self-correlation function (SF) and permutation entropy (PE), are used to estimate the TD signature of chaotic time series. Through extracting the characteristic peak from the SF curve, a series of TD signature evolution maps are firstly obtained in the parameter space of coupled strength and frequency detuning. Meantime, the influences of injection current on the evolution maps of TD signature have been discussed, and the optimum scope of TD signature suppression is also specified. An overall qualitative agreement between our theoretical and experimental results is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.