Abstract

Transmission electron microscopy and powder x-ray diffraction methods have been used to investigate the evolution of two-phase (L12 + DO22) microstructures from the quenched fcc phase of the Ni-5Al-20V (at. %) alloy. The microstructure after annealing in a temperature range from 650 to 900 °C differs from the eutectoid structure which might be expected for the alloy according to the eutectoid-type phase diagram of the Ni3Al-Ni3V section. This structure results from fast kinetics of ordering in the fcc → L12 and fcc → DO22 phase transitions. Four main stages in the microstructural evolution were observed. Stage I is the formation of spheroidal coherent L12 clusters in a disordered fcc matrix. During stage II the L12 clusters transform into cuboidal precipitates, and the fcc matrix orders into three DO22 variants (which may have interfaces that are wetted by thin fcc layers). In stage III accommodation of misfit (elastic energy) between different phases and variants occurs by formation of (110) twins or a single variant of the DO22 phase and tetragonally strained lamellae of the L12 phase. Stage IV is a discontinuous coarsening process in which a coarse incoherent two-phase structure replaces the fine coherent one. Grains of the coarse structure are nucleated on high-angle boundaries of primary fcc or other surfaces. Many of the grains are found twinned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.