Abstract

We present a study of the transmission of electrons through a semiconductor quantum wire with strong spin-orbit coupling in proximity to an s-wave superconductor, which is Coulomb-blockaded. Such a system supports Majorana zero modes in the presence of an external magnetic field. Without superconductivity, phase lapses are expected to occur in the transmission phase, and we find that they disappear when a topological superconducting phase is stabilized. We express tunneling through the nanowire with the help of effective matrix elements, which depend on both the fermion parity of the wire and the overlap with Bogoliubov-de-Gennes wave functions. Using a modified scattering matrix formalism, that allows for including electron-electron interactions, we study the transmission phase in different regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.