Abstract

Combined 147Sm 143Nd and the now extinct [ τ( 1 2 ) 146=103×10 6 yr] 146Sm 142Nd isotopic systematics are reported for early Archean gneisses from Greenland (Amîtsoq and Akilia associations), and Canada (Acasta gneiss). Using both field relationships and high resolution UPb SHRIMP ion-probe ages, it has been possible to identify the most ancient rocks in these terrains for isotopic analyses. Preliminary 142Nd analyses of a still limited number of samples have failed to identify terrestrial 142Nd anomalies. Effects, if present, are limited to < 10 ppm and we have thus been unable to confirm the +33±4 ppm ϵ 142 value claimed by Harper and Jacobsen (1992a, b) for a single sample. From the lack of 146Sm 142Nd effects we infer that large-scale fractionation events that may have occurred in the first 200 Ma of Earth history did not leave a significant nor widespread imprint on the early Archean mantle or crust. If a terrestrial magma ocean, with associated LREE fractionation, formed as a result of planetary accretion, then it had a lifetime of at most ∼250 m.y. before being remixed into the Earth's mantle. The samples analysed in this study have a range of ϵ 143 values including highly positive values of up to +4.2. This requires that the earliest known Archean crust was differentiated from a reservoir that was strongly depleted in the LREE as compared with chondritic compositions. In the early Archean it is proposed that the depletions in LREE are a consequence of extraction of a limited fraction of the Earth's continental crust ( < 10%) from the upper 200 km of the mantle. A three reservoir model, consisting of the continental crust, depleted mantle and a more primitive mantle reservoir can be extended to account for both the present-day, as well as the evolving Nd isotopic composition of the Earth's crust and mantle. In contrast to previous models, the rate of growth of the continental crust is used as an input parameter to constrain the concomitant growth and evolution of the depleted mantle reservoir. Recycling of large volumes of bulk continental crust into the mantle is not considered to be an important process, nor is the existence of an additional major enriched component in the early Archean mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.