Abstract

BackgroundDefining the origin of genetic novelty is central to our understanding of the evolution of novel traits. Diversification among fatty acid desaturase (FAD) genes has played a fundamental role in the introduction of structural variation in fatty acyl derivatives. Because of its central role in generating diversity in insect semiochemicals, the FAD gene family has become a model to study how gene family expansions can contribute to the evolution of lineage-specific innovations. Here we used the codling moth (Cydia pomonella) as a study system to decipher the proximate mechanism underlying the production of the ∆8∆10 signature structure of olethreutine moths. Biosynthesis of the codling moth sex pheromone, (E8,E10)-dodecadienol (codlemone), involves two consecutive desaturation steps, the first of which is unusual in that it generates an E9 unsaturation. The second step is also atypical: it generates a conjugated diene system from the E9 monoene C12 intermediate via 1,4-desaturation.ResultsHere we describe the characterization of the FAD gene acting in codlemone biosynthesis. We identify 27 FAD genes corresponding to the various functional classes identified in insects and Lepidoptera. These genes are distributed across the C. pomonella genome in tandem arrays or isolated genes, indicating that the FAD repertoire consists of both ancient and recent duplications and expansions. Using transcriptomics, we show large divergence in expression domains: some genes appear ubiquitously expressed across tissue and developmental stages; others appear more restricted in their expression pattern. Functional assays using heterologous expression systems reveal that one gene, Cpo_CPRQ, which is prominently and exclusively expressed in the female pheromone gland, encodes an FAD that possesses both E9 and ∆8∆10 desaturation activities. Phylogenetically, Cpo_CPRQ clusters within the Lepidoptera-specific ∆10/∆11 clade of FADs, a classic reservoir of unusual desaturase activities in moths.ConclusionsOur integrative approach shows that the evolution of the signature pheromone structure of olethreutine moths relied on a gene belonging to an ancient gene expansion. Members of other expanded FAD subfamilies do not appear to play a role in chemical communication. This advises for caution when postulating the consequences of lineage-specific expansions based on genomics alone.

Highlights

  • Defining the origin of genetic novelty is central to our understanding of the evolution of novel traits

  • Expansion of FADs in the genome of C. pomonella We identified candidates potentially involved in fatty acid synthesis by searching in the genome of C. pomonella for genes encoding fatty acid desaturases, which are characterized by a fatty acid desaturase type 1 domain (PFAM domain PF00487)

  • We found that FAD genes are distributed across 12 of the 27 autosomes, with no FAD genes on either Z or W sex chromosome (Fig. 3)

Read more

Summary

Introduction

Defining the origin of genetic novelty is central to our understanding of the evolution of novel traits. Because of its central role in generating diversity in insect semiochemicals, the FAD gene family has become a model to study how gene family expansions can contribute to the evolution of lineage-specific innovations. Establishing the origin of genetic novelty and innovation is central to our understanding of the evolution of novel traits. The size of gene families is influenced by both stochastic processes and selection, and large differences in genetic makeup can be indicative of lineage-specific adaptation and potentially associate with traits contributing to phenotypical differentiation between groups [2, 3]. Deciphering the underlying genetic and molecular architecture of new phenotypic characters is necessary for a complete understanding of the role played by the accumulation of genetic variation through gene duplication

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call