Abstract

Heat shock is a feasible means to break rock mass in engineering duo to the large additional thermal stress caused by thermal expansion. This paper established a coupled thermal transfer and rock deformation model based on the energy conservation and the elastic deformation theory of rock. In the model, the failure and damage of rock are judged according to the Drucker-Prager criterion. A finite element method of COMSOL Multiphysics to study the characteristics of temperature, stress distribution and damage zone on a rock surface is proposed. Results show that the failure of rock mass occurs at the cusps of the heater first duo to stress concentration and then grows at both sides of the heater greatly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call