Abstract

MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call