Abstract

Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve ‘satellite plasmids’ with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature.

Highlights

  • Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species

  • We added the plasmid pQGS (Fig. 1a), which has an RSF1010-derived backbone from pMMB67EH36, to E. coli K-12 strain BW2511337. pQGS has three genes inserted into the RSF1010 backbone at a site where accessory genes are found in natural IncQ plasmids[33]

  • We found that E. coli cells with accessory gene deletion plasmids (DPs) have a much higher fitness than cells containing a mixture of satellite and ancestor plasmids

Read more

Summary

Introduction

Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. With some notable exceptions[16,19], it usually takes a long time—at least several hundred cell generations—and constant selection for plasmid function for compensatory mutations to arise when these mechanisms have been directly observed in laboratory populations of microbes[20]. These long timescales and stringent conditions may be unrealistic in most natural environments.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.