Abstract
Satellite DNAs are known for an unusual and nonuniform evolution characterized by rapid evolutionary change between species and concerted evolution leading to molecular homogeneity within species. In this paper we use satellite DNAs for phylogenetic analysis of a rapidly evolving lineage of spiders and compare the phylogeny with a hypothesis previously generated based on mitochondrial DNA and allozymes. The spiders examined include almost all species within a monophyletic clade of endemic Hawaiian Tetragnatha species, the spiny-leg clade. The phylogeny based on satellite sequences is largely congruent to those produced by mtDNA and allozymes, except that the satellite DNA yields much longer branches, with higher levels of support for any given node. Closely related species that have differentiated ecologically within an island are well resolved with satellite DNA but much less so with mtDNA. These results suggest that Tetragnatha stDNA repeats seem to be evolving gradually and cohesively during the diversification of these endemic Hawaiian spiders. The study also reveals gain-loss of satellite DNA copies during species diversification. We conclude that satellite DNA sequences may potentially be very useful for resolving relationships between rapidly evolving taxa within an adaptive radiation. In addition, satellite DNA as a nuclear marker suggests that hybridization or peripatry could play a possible role in species formation that cannot be revealed by mitochondrial markers due to its maternal inheritance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.