Abstract
Progress is reviewed on the simulation of wave-particle interactions in the ion cyclotron range of frequencies (ICRF). Two important aspects of this problem are described. First, mode conversion from a long wavelength fast magnetosonic wave to short wavelength ion Bernstein waves (IBW) and ion cyclotron waves (ICW) is simulated and validation tests of the simulations against experiment are presented. Second, simulations of the quasilinear evolution of nonthermal ion tails during the minority heating are reviewed and experimental validation tests are also discussed. In this paper we describe how access to teraflop computing capability has made it possible to advance the state of the art in this area. We also discuss two aspects of the wave-particle interaction where future work is needed and where in particular access to sub-petaflop and petaflop computing capability would be highly desirable. This work involves the interaction of ICRF waves with energetic neutral beam ions at high ion cyclotron harmonic number and addresses the inclusion of finite ion drift orbit effects in the nonthermal ion tail evolution and the inclusion of nonlinear effects such as RF sheaths in the antenna – edge plasma coupling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have