Abstract

Synthetic Aperture Radar (SAR) images from ERS‐I have been used to study the characteristics of internal waves northeast and south of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank‐ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. On the basis of the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water by a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by the nonlinear Kortweg‐deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a “turning point” of approximately equal layer depths that has been observed in the SAR image and simulated by the numerical model. The importance of the dissipation effect in the coastal area is also discussed and demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.