Abstract

Synthetic aperture radar (SAR) images from ERS-1 and ERS-2 have been used to study the characteristics of internal waves in the East China Sea. Rank-ordered packets of nonlinear internal waves in the East China Sea are often observed in the SAR images, especially in the northeast of Taiwan. In this region, the internal wave field is very complicated, and its generation mechanisms include the influence of the tide and the upwelling, which is induced by the intrusion of the Kuroshio across the continental shelf. The internal wave distributions in the East and South China Seas have been compiled based on the SAR observations from satellites. The Kortweg–deVries (KdV) type equation has been used to study the evolution of internal wave packets generated in the upwelling area. Depending on the mixed layer depth, both elevation and depression waves can be generated based on numerical simulations as observed in the SAR images. The merging of two wave packets from nonlinear wave–wave interaction in the Yellow Sea has been observed in the SAR image and is demonstrated by numerical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call