Abstract

AbstractThe light absorption enhancement (Eabs) of black carbon (BC) coated with non‐BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of Eabs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. Eabs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in Eabs at 520 nm, with an estimated contribution percentages of 47.5%–94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on Eabs were evaluated through comparing measured Eabs with that calculated by the Mie theory. After OH exposure of 1 × 1010 molecules cm−3 s, the thickening of coating materials led to an Eabs increase by 3.2% ± 1.6%, while the chemical composition changes or photobleaching induced an Eabs decrease by 4.7% ± 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light‐absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.