Abstract

BackgroundWhile Iran is on the path to eliminating malaria, the disease with 4.9 million estimated cases and 9300 estimated deaths in 2018 remains a serious health problem in the World Health Organization (WHO) Eastern Mediterranean Region. Anopheles stephensi is the main malaria vector in Iran and its range extends from Iraq to western China. Recently, the vector invaded new territories in Sri Lanka and countries in the Horn of Africa. Insecticide resistance in An. stephensi is a potential issue in controlling the spread of this vector.MethodsData were collated from national and international databases, including PubMed, Google Scholar, Scopus, ScienceDirect, SID, and IranMedex using appropriate search terms.ResultsIndoor residual spaying (IRS) with DDT was piloted in Iran in 1945 and subsequently used in the malaria eradication programme. Resistance to DDT in An. stephensi was detected in Iran, Iraq, Pakistan, and Saudi Arabia in the late 1960s. Malathion was used for malaria control in Iran in 1967, then propoxur in 1978, followed by pirimiphos-methyl from 1992 to 1994. The pyrethroid insecticide lambda-cyhalothrin was used from 1994 to 2003 followed by deltamethrin IRS and long-lasting insecticidal nets (LLINs). Some of these insecticides with the same sequence were used in other malaria-endemic countries of the region. Pyrethroid resistance was detected in An. stephensi in Afghanistan in 2010, in 2011 in India and in 2012 in Iran. The newly invaded population of An. stephensi in Ethiopia was resistant to insecticides of all four major insecticide classes. Different mechanisms of insecticide resistance, including metabolic and insecticide target site insensitivity, have been developed in An. stephensi. Resistance to DDT was initially glutathione S-transferase based. Target site knockdown resistance was later selected by pyrethroids. Esterases and altered acetylcholinesterase are the underlying cause of organophosphate resistance and cytochrome p450s were involved in pyrethroid metabolic resistance.ConclusionsAnopheles stephensi is a major malaria vector in Iran and many countries in the region and beyond. The species is leading in terms of development of insecticide resistance as well as developing a variety of resistance mechanisms. Knowledge of the evolution of insecticide resistance and their underlying mechanisms, in particular, are important to Iran, considering the final steps the country is taking towards malaria elimination, but also to other countries in the region for their battle against malaria. This systematic review may also be of value to countries and territories newly invaded by this species, especially in the Horn of Africa, where the malaria situation is already dire.

Highlights

  • While Iran is on the path to eliminating malaria, the disease with 4.9 million estimated cases and 9300 estimated deaths in 2018 remains a serious health problem in the World Health Organization (WHO) Eastern Mediter‐ ranean Region

  • Insecticide resistance prompted a series of insecticide changes over time, from DDT to dieldrin, malathion, propoxur, pirimiphosmethyl, lambda-cyhalothrin, and deltamethrin to the present time [3, 8,9,10,11,12,13,14,15,16,17,18,19,20]

  • Insecticide resistance management strategies are recommended to keep the remaining active ingredients in the arsenal of public health

Read more

Summary

Introduction

While Iran is on the path to eliminating malaria, the disease with 4.9 million estimated cases and 9300 estimated deaths in 2018 remains a serious health problem in the World Health Organization (WHO) Eastern Mediter‐ ranean Region. Insecticide resistance in An. stephensi is a potential issue in controlling the spread of this vector. DDT was first used in Iran for malaria vector control in 1945 [2,3,4]. It was the insecticide of choice during the national malaria eradication campaign starting in 1956 following the Global Malaria Eradication Programme (GMEP) guidelines [2,3,4,5,6,7]. Insecticide resistance prompted a series of insecticide changes over time, from DDT to dieldrin, malathion, propoxur, pirimiphosmethyl, lambda-cyhalothrin, and deltamethrin to the present time [3, 8,9,10,11,12,13,14,15,16,17,18,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call