Abstract

We numerically simulate the propagation of finite energy Airy pulses in optical fibers with cubic-quintic nonlinearity and analyze the effects of quintic nonlinear parameters and soliton order number on their evolution properties. The soliton pulses are observed, whose peak amplitudes and corresponding temporal positions will vary with the propagation distance. Depending on different quintic nonlinearity parameters and soliton order number, the soliton pulse temporal positions exhibit weak decayed oscillations and then nearly linearly shift to leading or trailing edge of the Airy wavepacket, or tend to fixed positions, and the peak amplitudes also exhibit decayed oscillations but with different oscillation amplitude and central values. For large soliton order number, the soliton pulses are considerably compressed. Other weak dispersive wave pulses will appear near the main soliton pulses and gradually depart from the main soliton pulses. In the case of small soliton order, despite their considerable energy attenuation, the main lobes and even minority of the neighboring side lobes of the Airy pulses can still recover from the energy transfer to the soliton pulses and the dispersive wave pulses and maintain their unique properties of self-healing and self-acceleration in time for a very long distance. In the case of large soliton order, however, the Airy wavepacket only remains its very weak background and even disappears quickly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call