Abstract

To evaluate the self-regeneration feasibility of exsolved Co–Fe nanoparticles on the La0.3Sr0.7Cr0.3Fe0.6Co0.1O3−δ perovskite at intermediate operation temperature (700 °C), the evolution of surface morphology and particle phases during a redox process has been determined by scanning and transmission electron microscopy. Unlike the complete reincorporation of the exsolved metals back to the perovskite lattice at 800 °C during the reoxidation process, the transition-metal oxide remains on the surface as an intermediate phase because of a sluggish reincorporation rate at 700 °C. Although the transition-metal oxide particles grow and coarsen quickly in an oxidizing atmosphere, the nanoparticles could still be formed by a disintegration of the reduced spinel oxide in a reducing atmosphere. The hemispherical-like shape of the nanoparticles can be achieved by minimizing metallic surface energy and maintaining the strong metal–oxide interaction. The redispersion of Co–Fe nanoparticles completes the self-regenera...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.