Abstract

BackgroundEukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication. It has been inferred that genes for these enzymes were already present in the last common ancestor of the NCLDV. However, the details of the evolution of these genes that bear on the complexity of the putative ancestral NCLDV and on the evolutionary relationships between viruses and their hosts are not well understood.ResultsPhylogenetic analysis of the ATP-dependent and NAD-dependent DNA ligases encoded by the NCLDV reveals an unexpectedly complex evolutionary history. The NAD-dependent ligases are encoded only by a minority of NCLDV (including mimiviruses, some iridoviruses and entomopoxviruses) but phylogenetic analysis clearly indicated that all viral NAD-dependent ligases are monophyletic. Combined with the topology of the NCLDV tree derived by consensus of trees for universally conserved genes suggests that this enzyme was represented in the ancestral NCLDV. Phylogenetic analysis of ATP-dependent ligases that are encoded by chordopoxviruses, most of the phycodnaviruses and Marseillevirus failed to demonstrate monophyly and instead revealed an unexpectedly complex evolutionary trajectory. The ligases of the majority of phycodnaviruses and Marseillevirus seem to have evolved from bacteriophage or bacterial homologs; the ligase of one phycodnavirus, Emiliana huxlei virus, belongs to the eukaryotic DNA ligase I branch; and ligases of chordopoxviruses unequivocally cluster with eukaryotic DNA ligase III.ConclusionsExamination of phyletic patterns and phylogenetic analysis of DNA ligases of the NCLDV suggest that the common ancestor of the extant NCLDV encoded an NAD-dependent ligase that most likely was acquired from a bacteriophage at the early stages of evolution of eukaryotes. By contrast, ATP-dependent ligases from different prokaryotic and eukaryotic sources displaced the ancestral NAD-dependent ligase at different stages of subsequent evolution. These findings emphasize complex routes of viral evolution that become apparent through detailed phylogenomic analysis but not necessarily in reconstructions based on phyletic patterns of genes.ReviewersThis article was reviewed by: Patrick Forterre, George V. Shpakovski, and Igor B. Zhulin.

Highlights

  • Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication

  • It has been shown that 4 diverse families of large DNA viruses of eukaryotes (NCLDV), namely, Poxviridae, Asfarviridae, Iridoviridae, and Phycodnaviridae, share a set of conserved genes with functions implicated in replication, transcription and virion morphogenesis, suggesting an origin from a single ancestral virus

  • The reconstruction of the ancestral NCLDV gene set using a maximum parsimony method[4] or a more sophisticated maximum likelihood approach [6] led to the delineation of a set of 40-50 ancestral genes that include the genes for the key proteins required for genome replication, expression and virion morphogenesis

Read more

Summary

Introduction

Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication. It has been shown that 4 diverse families of large DNA viruses of eukaryotes (NCLDV), namely, Poxviridae, Asfarviridae, Iridoviridae, and Phycodnaviridae, share a set of conserved genes with functions implicated in replication, transcription and virion morphogenesis, suggesting an origin from a single ancestral virus. This apparently monophyletic class of viruses was denoted Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) to emphasize the presence of a cytoplasmic stage in the reproduction of most if not all of these viruses [1]. The reconstruction of the ancestral NCLDV gene set using a maximum parsimony method[4] or a more sophisticated maximum likelihood approach [6] led to the delineation of a set of 40-50 ancestral genes that include the genes for the key proteins required for genome replication, expression and virion morphogenesis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.