Abstract

Transthyretin cardiac amyloidosis (ATTR-CA) represents an inexorably progressive and fatal cardiomyopathy. Increased understanding of the underlying pathogenesis responsible for the misfolding of transthyretin and the subsequent accumulation of amyloid fibrils within the myocardium has led to the development of several disease-modifying therapies that act on different stages of the disease pathway. Tafamidis is the first, and to date remains the only, therapy approved for the treatment of ATTR-CA, which, alongside acoramidis, stabilizes the transthyretin tetramer, preventing disaggregation, misfolding and formation of amyloid fibrils. Gene-silencing agents, such as patisiran, vutrisian and eplontersen, and novel gene-editing therapies, such as NTLA-2001, act to reduce the hepatic synthesis of transthyretin. Anti-amyloid therapies represent another strategy in the treatment of ATTR-CA and are designed to bind amyloid fibril epitopes and stimulate macrophage-mediated removal of amyloid fibrils from the myocardium. Many of these treatments are at an early investigational stage but represent an important area of unmet clinical need and could potentially reverse disease and restore cardiac functions even in patients with advanced disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call