Abstract
In this study, how crystallographic texture and changes in microstructure affect the magnetic properties of a semi‐processed non‐oriented (NO) electrical steel, which is investigated in its as‐received state and after heat treatment, is evaluated. Electron backscattered diffraction analysis shows the variation in texture with a crystallographic orientation changing from a predominance of γ and α fibers to a random one after heat treatment, with a significant increase in components with <100> directions in the sheet plane, which are desired for NO steels because they are parallel to the direction of easy magnetization. Heat treatment has also increased the average grain size of the samples from 18 to 128 μm. Magnetic properties are analyzed over a wide frequency range and induction, presenting different behaviors in permeability and magnetic loss for the samples before and after heat treatment. The components of total magnetic loss are also evaluated, and the hysteresis loss of heat‐treated sample decreases significantly. This demonstrates that heat treatment reduces microstructural imperfections, causing a decrease in hysteresis losses. Therefore, it is concluded that the improvement in magnetic performance observed with heat treatment has its origin in the increase in fiber components related to the <100> directions and a decrease in microstructural imperfections.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have