Abstract

The unexpected phenomenon in which different transition metals (Co, Ni and Cu) presented significant variation of participation levels as the auxiliaries in Mn-based bimetallic oxide catalysts were reported here. It is found that the Co element more easily to form Mn enriched surface bimetallic oxides with Mn than Ni and Cu, resulting in Co-MnOx exhibited the best deNOx activity and SO2 tolerance, followed by Ni-MnOx and Cu-MnOx. The role of different transition metal and structure-activity relationships were systematically investigated by advanced techniques including Synchrotron XAFS and in situ DRIFTs analysis. The excellent activity of Co-MnOx was related to its unique Mn-enriched surface (Co2+)tet(Mn3+ Co3+)octO4 structure with Mn cations occupying the octahedral sites, which is superior to the Ni-MnOx and Cu-MnOx with Mn-lean surface. In addition, the reaction energy barrier of Co-MnOx is weakened due to the lower electron cloud density around the Mn atom as compared to Ni-MnOx and Cu-MnOx. Moreover, Co-MnOx benefiting from the rapid electron migration between Mn and Co, more active bidentate/bridged nitrates could react with adsorbed NH3 in faster reaction rates following the L-H mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.