Abstract
We investigated the catalytic efficiency of Mn-based bimetallic oxides in degrading toluene and ozone at room temperature. The room temperature-active bimetallic oxide catalysts were prepared by the addition of Fe, Cu, Ru, and Ag precursors to Mn/HZSM-5. We obtained H2-temperature-programmed reduction (H2-TPR) profiles, X-ray diffraction patterns, and X-ray photoelectron spectra to investigate the characteristics of the prepared catalysts. The catalytic efficiency of Mn-based bimetallic oxide catalysts in degrading toluene and ozone at room temperature was mostly improved by the addition of the secondary metals. The prepared bimetallic oxide catalysts, Cu-Mn/HZSM-5, Fe-Mn/HZSM-5, Ru-Mn/HZSM-5, and Ag-Mn/HZSM-5, enhanced efficiency for toluene removal compared to Mn/HZSM-5. The H2-TPR profiles of the Mn-based bimetallic oxide catalysts showed stronger and broader adsorption-desorption bands at lower temperatures than the profile of Mn/HZSM-5. Additionally, the ratio of the surface defective oxygen over the lattice oxygen on the bimetallic oxide catalysts was higher than that of Mn-only catalysts; the ratio of Mn3+ over Mn4+ was higher for all bimetallic oxide catalysts, as well. Among the bimetallic oxide catalysts, Ru-Mn/HZSM-5 showed the highest efficiency for the removal of toluene to COx due to the synergetic effect of the oxidation state and reducible potential at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.