Abstract

Using angle-resolved photoemission spectroscopy (ARPES), it is revealed that the low-energy electronic excitation spectra of highly underdoped superconducting and nonsuperconducting La(2-x)Sr(x)CuO(4) cuprates are gapped along the entire underlying Fermi surface at low temperatures. We show how the gap function evolves to a d(x(2)-y(2)) form with increasing temperature or doping, consistent with the vast majority of ARPES studies of cuprates. Our results provide essential information for uncovering the symmetry of the order parameter(s) in strongly underdoped cuprates, which is a prerequisite for understanding the pairing mechanism and how superconductivity emerges from a Mott insulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.