Abstract
We address the question of determining the evolution equation for surface waves propagating in water whose depth is much larger than the typical wavelength of the surface disturbance. We avoid making the usual approximation of supposing the evolution to be given in the form of a modulated wave-packet. We treat the problem by means of a conformal transformation allowing to explicitly find the Dirichlet-to-Neumann operator for the problem together with asymptotic expansions in parameters measuring the nonlinearity and depth. This allows us to obtain an equation in physical variables valid in the weakly nonlinear, deep-water regime. The equation is an integro-differential equation, which reduces to known cases for infinite depth. We discuss solutions in a perturbative setting and show that the evolution equation describes Stokes-like waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.