Abstract
The bandgap and polarization field play a key role in the ferroelectric photovoltaic effect. However, narrow bandgap induced electrical conductivity always brings out a depression of the photovoltaic performances. Based on the mechanisms of the photovoltaic effect and resistance switching behaviors in ferroelectric materials, this work realizes an evolution between the two effects by engineering the polarization field and barrier characteristics, which addresses the trade-off issues between the bandgap and polarization for ferroelectric photovoltaic effect. SrCoOx (SC, 2.5≤x≤3) with multivalent transition is introduced into Na0.5Bi0.5TiO3 (NBT) matrix material to engineered the polarization field and barrier characteristics. (1-x)NBT-xSC (x=0.03, 0.05, 0.07) solid solution films present an evolution of ferroelectric photovoltaic effect to grow out of nothing again to the disappearance of the photovoltaic effect and the appearance of resistance switching behavior. The 0.95NBT-0.05SC film achieve the open-circuit voltage of 0.81 V and the short-circuit current of 23.52 µA/cm2, and the 0.93NBT-0.07SC film obtains the resistive switching behavior with switch ratio of 100. This work provides a practicable strategy to achieve the fascinating evolution between photovoltaic effect and resistive switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.