Abstract

Despite the extensive neurological symptoms induced by COVID-19 and the identification of SARS-CoV-2 in post-mortem brain samples from COVID-19 patients months after death, the precise mechanisms of SARS-CoV-2 invasion into the central nervous system remain unclear due to the lack of research models. We collected glioma tissue samples from glioma patients who had a recent history of COVID-19 and examined the presence of the SARS-CoV-2 spike protein. Subsequently, spatial transcriptomic analyses were conducted on normal brain tissues, glioma tissues, and glioma tissues from glioma patients with recent COVID-19 history. Additionally, single-cell sequencing data from both glioma tissues and glioma organoids were collected and analyzed. Glioma organoids were utilized to evaluate the efficacy of potential COVID-19 blocking agents. Glioma tissues from glioma patients with recent COVID-19 history exhibited the presence of the SARS-CoV-2 spike protein. Differences between glioma tissues from glioma patients who had a recent history of COVID-19 and healthy brain tissues primarily manifested in neuronal cells. Notably, neuronal cells within glioma tissues of COVID-19 history demonstrated heightened susceptibility to Alzheimer's disease, depression, and synaptic dysfunction, indicative of neuronal aberrations. Expressions of SARS-CoV-2 entry factors were confirmed in both glioma tissues and glioma organoids. Moreover, glioma organoids were susceptible to pseudo-SARS-CoV-2 infection and the infections could be partly blocked by the potential COVID-19 drugs. Gliomas had inherent traits that render them susceptible to SARS-CoV-2 infection, leading to their representability of COVID-19 neurological symptoms. This established a biological foundation for the rationality and feasibility of utilization of glioma organoids as research and blocking drug testing model in SARS-CoV-2 infection within the central nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.