Abstract
Behavioral and physiological effects of partial kindling of the right ventral hippocampus by perforant path (PP) stimulation were investigated in the cat. Partial kindling produced lasting changes in affect (increased defensive response to rats) and predatory attack (decreased pawing and biting attack). Partial kindling also induced long term potentiation (LTP) of amygdala efferent transmission to ventromedial hypothalamus (VMH) and periaqueductal gray (PAG) in left and right hemispheres. LTP of field population spikes evoked in area CA3 by PP stimulation was also observed. LTP was detected using evoked potential methods. These findings parallel previous studies of left PP-CA3 partial kindling. Analysis of covariance removing effects of LTP from behavioral changes suggests that initiation of increased defensiveness at 2 days after completion of partial kindling depended on LTP of left and right amygdalo–VMH and right amygdalo–PAG transmission. From 6 days after kindling onward, increased defensiveness depended on LTP of right amygdalo–PAG transmission. Depotentiation of amygdala efferent LTP by bilateral low frequency amygdala stimulation (LFS) (900 pulses at 1 Hz, once daily for 7 days) selectively reduced LTP in right amygdala efferents. At the same time, defensive, but not predatory attack behavior, was returned to levels seen prior to partial kindling. Both depotentiation and reduction of defensiveness were transient. Defensiveness increased to post-kindling levels by 76 days after LFS. At the same time, LTP was restored in the right amygdalo–PAG pathway. In contrast LTP in the right amygdalo–VMH pathway remained depotentiated. Effects of LFS were not due to damage, as thresholds to evoke amygdala efferent response were unchanged. These findings suggest that lasting change in affect following partial hippocampal kindling depends on LTP of right amygdala efferent transmission to PAG. The findings parallel studies of non-convulsant pharmacological induction of lasting increases in defensiveness and amygdalo–PAG LTP with FG-7142. The parallel between the present findings and the FG-7142 experiments suggests that lasting changes in defensive response are dependent on LTP of right amygdala efferents to the PAG, however produced. The findings suggest further that the spectrum of behavioral changes produced by partial kindling are dependent on changes in a variety of neural circuits, and that amygdala efferent transmission changes are responsible for changes in defensive behavior, but not predatory attack behavior. Clinical implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.