Abstract
Many bacteria use the chaperone-usher (CU) secretion pathway to assemble on their surfaces typical or atypical fimbrial organelles. Four consecutive genes of Myxococcus xanthus DK1622, MXAN3885-3882, were predicted to constitute an operon encoding a CU-like system involved in the assembly of the spore coat; however, experimental evidence supporting this hypothesis was lacking. In this study, co-transcription of MXAN3885-3883 was verified, and we found that this operon was expressed 12-15 h after initiation of M. xanthus development under conditions of stringent starvation. The MXAN3885 protein, which is highly homologous to, but expressed earlier than, the spore coat protein U of another M. xanthus strain, DZF1, was present mainly on the outer surface of myxospores. Inactivation of MXAN3883, encoding a putative outer membrane usher, inhibited assembly of MXAN3885 protein on spore surfaces and caused certain morphological alterations in the spore coat. Hence, the CU-like pathway in M. xanthus indeed functions in spore coat biogenesis. Based on chaperone amino acid sequence comparisons, our analysis suggests that the structural basis of the M. xanthus CU-like pathway for spore coat assembly may be different from that of most surface structures assembled by classical CU systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.