Abstract

Mutations of DNA organisms are introduced by replication errors. However, SARS-CoV-2, as an RNA virus, is additionally subjected to rampant RNA editing by hosts. Both resources contributed to SARS-CoV-2 mutation and evolution, but the relative prevalence of the two origins is unknown. We performed comparative genomic analyses at intra-species (world-wide SARS-CoV-2 strains) and inter-species (SARS-CoV-2 and RaTG13 divergence) levels. We made prior predictions of the proportion of each mutation type (nucleotide substitution) under different scenarios and compared the observed versus the expected. C-to-T alteration, representing C-to-U editing, is far more abundant that all other mutation types. Derived allele frequency (DAF) as well as novel mutation rate of C-to-T are the highest in SARS-CoV-2 population, and C-T substitution dominates the divergence sites between SARS-CoV-2 and RaTG13. This is compelling evidence suggesting that C-to-U RNA editing is the major source of SARS-CoV-2 mutation. While replication errors serve as a baseline of novel mutation rate, the C-to-U editing has elevated the mutation rate for orders of magnitudes and accelerates the evolution of the virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.