7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.epsl.2024.118991
Copy DOIJournal: Earth and Planetary Science Letters | Publication Date: Sep 12, 2024 |
License type: cc-by |
All large planets in our Solar System have rings, and it has been suggested that Mars may have had a ring in the past. This raises the question of whether Earth also had a ring in the past. Here, we examine the paleolatitudes of 21 asteroid impact craters from an anomalous ∼40 m.y. period of enhanced meteor impact cratering known as the Ordovician impact spike, and find that all craters fall in an equatorial band at ≤30°, despite ∼70 % of exposed, potentially crater-preserving crust lying outside this band. The beginning of this period is marked by a large increase in L chondrite material accumulated in sedimentary rocks at 465.76 ± 0.30 Ma, which, together with the impact spike, has long been suggested to result from break-up of the L chondrite parent body in the asteroid belt. Our binomial probability calculation indicates that it is highly unlikely that the observed crater distribution was produced by bolides on orbits directly from the asteroid belt (P = 4 × 10–8). We therefore propose that instead, a large fragment of the L chondrite parent body broke up due to tidal forces during a near-miss encounter with the Earth at ∼466 Ma. Given the longevity of the impact spike and sediment-hosted L chondrite debris accumulation, we suggest that a debris ring formed after this break up event, from which material deorbited to produce the observed crater distribution. We further speculate that shading of Earth by this ring may have triggered cooling into the Hirnantian global icehouse period.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.