Abstract

We report structural, magnetic, dielectric and magnetoelectric properties of orthorhombic Bi2(1-x)Ho2xFe4O9 (x=0, 0.01) ceramics (space group ‘Pbam’) synthesized by conventional solid state reaction route. Rietveld refined X-ray diffraction (XRD) shows phase formation of the samples along with reduction in lattice parameters and cell volume due to lower ionic radii substitution of Ho3+ at Bi3+-site. DC magnetization study revealed antiferromagnetic transition (TN) of the parent (BFO = 250 K) as well as 1% Ho substituted sample (BHFO1 = 253 K) along with increase in magnetization. Opening of hysteresis was observed for BHFO1 sample implying onset of weak ferromagnetism with dominating antiferromagnetic behaviour. Moreover, temperature dependent dielectric (ε') study and its derivative (dε'/dT) for both the samples show significant anomaly around the antiferromagnetic transition (TN) thus, implying a plausible magnetoelectric coupling between the magnetic as well as the electric order parameters in the studied samples. Magnetoelectric coupling was also confirmed from temperature and magnetic field (1.3 T) dependant tan loss plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.