Abstract

An approach that extends equilibrium thermodynamics principles to out-of-equilibrium systems is based on the local equilibrium hypothesis. However, the validity of the a priori assumption of local equilibrium has been questioned due to the lack of sufficient experimental evidence. In this paper, we present experimental results obtained from a pure thermodynamic study of the non-turbulent Rayleigh–Bénard convection at steady-state to verify the validity of the local equilibrium hypothesis. A non-turbulent Rayleigh–Bénard convection at steady-state is an excellent ‘model thermodynamic system’ in which local measurements do not convey the complete picture about the spatial heterogeneity present in the macroscopic thermodynamic landscape. Indeed, the onset of convection leads to the emergence of spatially stable hot and cold domains. Our results indicate that these domains while break spatial symmetry macroscopically, preserves it locally that exhibit room temperature equilibrium-like statistics. Furthermore, the role of the emergent heat flux is investigated and a linear relationship is observed between the heat flux and the external driving force following the onset of thermal convection. Finally, theoretical and conceptual implications of these results are discussed which opens up new avenues in the study non-equilibrium steady-states, especially in complex, soft, and active-matter systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.