Abstract

ZSM-5, HY, and β zeolites were tested for cracking supercritical dodecane (SCD) in the presence and absence of supercritical water (SCW). A key experimental advantage of operating at supercritical conditions is that SCW and SCD are completely miscible, eliminating uncertainty introduced by liquid-liquid mass transport. As expected, all three zeolites were active in the absence of SCW, resulting in 70–80% dodecane conversion after 2 h at 400 °C. In the presence of SCW, only ZSM-5 retained activity, with a measured dodecane conversion of approximately 35%. Post-reaction characterization of the zeolites indicated that only ZSM-5 retained crystallinity, suggesting that access to acid sites decreases when the Y and β zeolites decrystallize. Although ZSM-5 retained crystallinity after exposure to the SCD/SCW reaction mixture, its BAS density decreased by >95% and its micropore area decreased by 80%. Interestingly, while the SCW environment decreases ZSM-5 activity, the reduction is not consistent with the magnitude of the reduction in BAS or micropore area. The apparent contradiction suggested that some material other than ZSM-5 may play the role of catalyst and extensive tests were performed to verify that acid sites on ZSM-5 remained catalytically active in the presence of SCW. Catalyst reuse experiments indicated that ZSM-5 can be reused in SCW. Additional tests with Na-ZSM-5, silicalite, alumina, coke, silicic acid, Al(NO3)3, HNO3, and the supernatant liquid recovered after reaction failed to identify any material other than ZSM-5 that could act as a catalyst. Therefore, ZSM-5 must act as an acid catalyst, even in the presence of SCW and despite loss of many of its acid sites. In contrast, HY and β do not. This work helps guide future work on the use of zeolites in the presence of liquid water and dense supercritical water phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call