Abstract

Microstructural analyses have been performed on polar firn from the European Project for Ice Coring in Antarctica drilling site in Dronning Maud Land, Antarctica. The results derived from images of the firn structure in microscopic resolution indicate that dynamic recrystallization is active in firn at all depths, and it dominates the evolution of the microstructure when the firn density exceeds a critical value of 730 kg/m3 (overburden snow load ∼0.2 MPa). At the firn‐ice transition (density ∼820 kg/m3) the microstructure is characterized by many small grains and bulged or irregularly shaped grain boundaries. More than half of all grains show subgrain boundaries. Thus, strain‐induced boundary migration is an essential feature to describe the irregular grain structure. In agreement with previous studies, significant grain growth has been observed with depth for the largest grains in the samples. However, our microscopic analysis reveals that the grain growth with depth in fact vanishes if all grains larger than 65 μm in diameter are taken into account. This result reflects the fact that the growth of the largest grains is counteracted by grain size reduction by shrinking and subdivision of old grains, as well as production of new grains. Consequently, previous conclusions that grain growth in polar firn is essentially analogous to normal grain growth in metallic and ceramic sinters and that the stored strain energy is small in comparison with grain boundary energy can no longer be supported. Additionally, our observations show that the incipience of dynamic recrystallization in polar ice sheets is not as sensitive to temperature as supposed so far. A discussion of the change of the mean grain size due to the measuring technique is imperative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call