Abstract

The preferred c axis orientation of ice from polar ice sheets develops essentially as a result of intracrystalline slip; but dynamic recrystallization appears to alter the kinetics of the development of deformation textures and is, at high temperature, at the origin of recrystallization textures. The purpose of this work is to obtain a better understanding of recrystallization processes that occur in polar ice sheets and to clarify the relationship between dynamic recrystallization and textures. The study was based on two deep ice cores from Greenland and Antarctica, the GReenland Ice core Project (GRIP) and Vostok ice cores. The structure along the GRIP core displays normal grain growth in the first 100 m of the ice sheet and rotation recrystallization and migration recrystallization near the bottom. Only grain growth and rotation recrystallization appear to occur in the Vostok ice core. The transition between these recrystallization regimes was studied, estimating, for interglacial ice, the evolution with depth of the dislocation density. This calculation has shown the efficiency of grain boundary migration for the absorption of dislocations. At Vostok, the highest value of the dislocation density is found at a depth of about 1000 m and the continuous decrease in the dislocation density below this depth is related to the increase of the grain boundary migration rate. It is shown that the driving force required to initiate migration recrystallization is not reached in interglacial ice at Vostok. The observed textures were compared with those predicted by the self‐consistent approach. Recrystallization textures are interpreted by assuming that the less stressed grains, i.e., the best oriented for basal slip, are favored by the size advantage of subgrains. The recrystallization textures are compared with those of other materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.