Abstract
Discrete scale invariance, which corresponds to a partial breaking of the scaling symmetry, is reflected in the existence of a hierarchy of characteristic scales l0,l0λ,l0λ2,…, where λ is a preferred scaling ratio and l0 a microscopic cut-off. Signatures of discrete scale invariance have recently been found in a variety of systems ranging from rupture, earthquakes, Laplacian growth phenomena, "animals" in percolation to financial market crashes. We believe it to be a quite general, albeit subtle phenomenon. Indeed, the practical problem in uncovering an underlying discrete scale invariance is that standard ensemble averaging procedures destroy it as if it was pure noise. This is due to the fact, that while λ only depends on the underlying physics, l0 on the contrary is realization-dependent. Here, we adapt and implement a novel so-called "canonical" averaging scheme which re-sets the l0 of different realizations to approximately the same value. The method is based on the determination of a realization-dependent effective critical point obtained from, e.g., a maximum susceptibility criterion. We demonstrate the method on diffusion limited aggregation and a model of rupture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.