Abstract

This paper presents the results of an investigation pertaining to multifractal structure, degree of multifractality and occurrence of deconfinement phase transition. These results are obtained by carrying out analysis of generalized dimensions and Levy index involving relativistic charged particles produced on 14.5A GeV/c28 Si -nucleus collisions following Takagi's approach. The values of Levy index, μ, generalized fractal dimensions, Dq and degree of multifractality, βq, for different orders of moments are calculated in terms of Takagi moments for the experimental, FRITIOF, HIJING and random Monte Carlo (MC-RAND) generated events. The values of multifractal specific heats for all the above data sets are extracted using generalized dimensions, Dq. The analysis also shows small variations in the degree of multifractality for the experimental, FRITIOF and HIJING simulated events. However, the degree of multifractality is quite larger for the random Monte Carlo 28 Si -nucleus generated events at 14.5A GeV/c. Furthermore, the analyses of multifractal specific heat and Levy index in terms of Takagi moments support the presence of multifractality and occurrence of deconfinement phase transition in the experimental and simulated data sets, but for the uncorrelated Monte Carlo simulated events, occurrence of nonthermal phase transition is revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call