Abstract

A review of experimental data on charmoniumproduction that were obtained in fixed-target experiments at the SPS synchrotron and in proton-proton collisions and in collisions of lead nuclei in beams of the Large Hadron Collider (LHC) at CERN (Switzerland) is presented. A comparison with data obtained at the Brookhaven National Laboratory (USA) from experiments at the Relativistic Heavy Ion Collider (RHIC) is performed. Measurement of the suppression of J/ψ-meson production as a possible signal of the production of quark-gluon plasmawas proposed back in 1986 by T. Matsui and H. Satz. An anomalous suppression of J/ψ-meson production was discovered by the NA50 Collaboration at SPS (CERN) in central collisions of lead nuclei at the c.m. collision energy of 158 GeV per nucleon. Data obtained at the c.m. energy of 200 GeV per nucleon in the PHENIX experiment at RHIC indicate that, depending on multiplicity, the suppression of J/ψ-meson production at this energy approximately corresponds to the suppression of J/ψ-meson production in collisions of lead nuclei at the SPS accelerator. Theoretical models that take into account the regeneration of J/ψ mesons describe better RHIC experimental data. The measurement of charmonium production in proton-proton collisions and in collisions of lead nuclei in LHC beams revealed the importance of taking into account the regeneration process. At the LHC energies, it is also necessary to take into account the contribution of B-meson decays. Future measurements of charmonium production at the LHC to a higher statistical precision and over an extended energy region would be of importance for obtaining deeper insight into the mechanism of charmonium production and for studying the properties of matter at high energy density and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.